*️⃣Промт дня: оптимизация кода и повышение его производительности
Когда проект растет, вопросы производительности становятся критическими. Оптимизация кода — важный шаг на пути к масштабированию приложений, особенно когда дело касается обработки больших объёмов данных, многозадачности или работы с сетевыми запросами. Python, несмотря на свою удобство и читаемость, требует внимания к деталям в области производительности.
Промт:
Проанализируй текущий код на Python и оптимизируй его для повышения производительности. • Произведи замер времени работы функций с использованием time или timeit. • Используй Cython, NumPy или pandas для ускорения вычислений, где это возможно. • Оптимизируй работу с памятью, избавляясь от лишних копий данных и используя эффективные структуры данных (например, deque, defaultdict, set). • Применяй асинхронность (asyncio) или многозадачность (с помощью concurrent.futures или multiprocessing) для параллельной обработки данных. • Профилируй код с помощью cProfile, line_profiler, чтобы выявить узкие места в производительности.
➡️Задача: Уменьшить время работы программы и потребление ресурсов, обеспечив эффективную обработку данных и улучшение отклика системы.
➡️Рекомендуемые инструменты и методы: 🟠timeit и cProfile — для замеров производительности, 🟠NumPy, pandas — для векторизованных операций с данными, 🟠asyncio или multiprocessing — для асинхронной и параллельной обработки, 🟠memory_profiler — для анализа потребления памяти.
*️⃣Промт дня: оптимизация кода и повышение его производительности
Когда проект растет, вопросы производительности становятся критическими. Оптимизация кода — важный шаг на пути к масштабированию приложений, особенно когда дело касается обработки больших объёмов данных, многозадачности или работы с сетевыми запросами. Python, несмотря на свою удобство и читаемость, требует внимания к деталям в области производительности.
Промт:
Проанализируй текущий код на Python и оптимизируй его для повышения производительности. • Произведи замер времени работы функций с использованием time или timeit. • Используй Cython, NumPy или pandas для ускорения вычислений, где это возможно. • Оптимизируй работу с памятью, избавляясь от лишних копий данных и используя эффективные структуры данных (например, deque, defaultdict, set). • Применяй асинхронность (asyncio) или многозадачность (с помощью concurrent.futures или multiprocessing) для параллельной обработки данных. • Профилируй код с помощью cProfile, line_profiler, чтобы выявить узкие места в производительности.
➡️Задача: Уменьшить время работы программы и потребление ресурсов, обеспечив эффективную обработку данных и улучшение отклика системы.
➡️Рекомендуемые инструменты и методы: 🟠timeit и cProfile — для замеров производительности, 🟠NumPy, pandas — для векторизованных операций с данными, 🟠asyncio или multiprocessing — для асинхронной и параллельной обработки, 🟠memory_profiler — для анализа потребления памяти.
Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%.
Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time.
Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.
However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.
Библиотека питониста | Python Django Flask from no